
/ AD AO6O fl7 MA RY LANO IMIV C04.LESE PARK CO~~UTER SCIENCE CENTER F/S 9/2
OlE—WA Y SOIJIDED CELUSAR ACCEPTORS. (U)
Mt. 78 C R DYER AFOSR—77 3271

UNCLASSIFIED cSC—TR—660 Pa 

1’ ~!1 P!:IUl
R]r.DDADD
~~iE• flflY

DA TE

1-79
DDC

b
— S



I ~J L.
L

L
L

I__ :o
I I

11111
11111’ ~~ llIH~ 

6

V



— — 
- .-

~~~— ~~~~~~~~~~~~~~~~~~ ~~~~~ -.. -~=~.- —~~~~- — — — — r ~

~ LEYEL~

: COMPUTER SCIENCE
TECHNICAL REPORT SERIES

D D O ~

~~~~i~uuTs H

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742

~~~~~~~ ± ± ?±~±~ ~ 
- -



- _._._ — — ~~~~~~~ ~~~~~ ~~~~~~~~~~ —

— / 1
- —_——.-- -

,

Jul~~~~~ 78 ~ /
~~ ~.-AF~SR-77-327:L — /~ t

ONE-WAY BOUNDED CELLULAR ACCEPTORS. !
- 

~~9~~~~vcr:iyo ary~~~~~~~~~~Computer Sciencc Center
•-_ College Park , MD 20742

— r~—-- -.—
I 

- 

~~~ ~~~~~~~~

---

~~~~~~~~~~~~~~~~~~~~~~~~~~
- /

‘
- ~~~~ - ‘

‘
I i ~ ~ ~ i ~~~~~~~ •

,. ~ —
. / C t 

~

- 

~~~~ 
/

1 

-

( / 7 ~T 
~
‘ ~~~~ 

~~~~~~~ 
~~~~ “ 1

ABSTRACT

The formal language recognition capabilities
• c~) of one-dimensional one-way bounded cellular automata

are studied. In particular , their relationships to
~LJ~J real-time two-way bounded cellular acceptors , real-

time iterative acceptors, real-time on-line multitape
Turing acceptors , and one-way multihead finite ac-

C., ceptors are investigated . It is shown that the Dyck,
linear, standard , and bracketed context-free languages
are accepted in real-time by one-way bounded cellular
acceptors.
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1 . I n t roduc t. i on

Cellular au toma ta  have been studied as parallel pattern

recognition devices with one- and two-dimensional input, e.a. in

(1 , 2 , 3 ,4 ) .  That work makes it clear that the inherent

para l l e l i sm of c e l l u l a r  automata can be exp loited to yield

fast recognition algorithms.

In one dimension , a bounded cellular acceptor (BCA) is

a finite lenqth string of identical finite—state machines,

or cells , each connected to its left and right neighbors.

Th i~; paper considers a h i gh l y restricted variant of the BCA ,

the one-way bounded cellular acceptor (OBCA) , in which each

cell is connected to its left neighbor only. In the non-

deterministic case , we show that the classes of languages

accepted by RCA’ S and ORCA ’s art’ the same. On the other

hand , we show that almost all of the known deterministic

RCA la nquaqes a r t ’ a iso accepted by de te rmin is t ic  OBCA ’ s

most without loss i n  51)eed . It  remains an open question ,

however, whether or not thcs~ two classes of languages are

identi cal. When both .-~re of unbounded length, it is known

tha t they ar e  e (juiva lent in acceptance power (51

The not i on of a one-way parall el automaton was apparent ly

first introduced by H e n nie  (6]. h is unilateral sequential

i t e r a t i v e  systems are somewhat s imilar  to the ORCA~s defined

he re , i f  one in t roduces  a u n i t  delay between each two 0

adjacent  c e ll s .  Cole ’s (7) iterative automata have a

~ItI- ~ __________
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specially designated input/output cell for sequentially

receiving and generating sequences of states , and there-

fore also are related in some respects to OBCA’ s, but they

are basically two-way . One-way sequential automata have

also been studied; for example , one-way multihead finite

automata (8) and on-line multitape Turing machines (9].

One-way bounded cellular acceptors will be shown to accept

languages not accepted by any of the three previously

mentioned classes of automata when restricted to real-time

computations.

In two dimensions , a bounded cellular array acceptor is

4 a rectangular array of identical finite-state machines, each

connected to its four nearest neighbors. The analog of

OBCA in two-dimensions consists of restricting the neigh-

borhood to the upper and left neighbor cells only ; this

defines a two-way ~CA on a rectangular tape. Hennie (6] has

considered such an analog for his iterative systems. Inoue

and Nakamura [10) have studied a restricted type of two-way

8CA in which cells do not make transitions at every time

step; rather, a trans ition “wave ” passes once diagonally

across the array. The work of Rosenfeld and Mi].gram (11]

on one-way parallel/sequential array automata also investi-

gates the effects of restricted information flow on the

acceptance of two-dimensional languages. In Section 5 we

briefly consider this restricted type of cellular array

acceptor.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2. Definitions

A one-way cellular automaton, K , is a one-dimensional

cellular automaton in which the neighborhood of a cell

consists of itself and its left neighbor only . Formally,

K is defined by specifying a pair C (Q, t~), where 0 is the

f i n i te , nonempty state set, and 6:Q2-÷20 (or -‘Q in the det-

erministic case) is the transition function. A copy of C

is assigned to each integer point on the real line ; the

copy at point i is -~alled cell i. The transition function

for cell i maps the current states of cells i and i-i into

the set of possible new states of cell i. A step of comp-

utation consists of a state transformation of each cell.

A conf~guration is a mapping from the integers into Q ft.
specifying the states of all the cells. The configuration

prior to the first step is called the initial configuration .

A one-way bounded cellular acceptor (OBCA in the deter-

ministic case, NOBCA in the nondeterministic case) is a

4-tuple M (K
~
QI,QA ,#), where K is a one-way cellular auto-

maton defined by the pair (Q,45 ); Q1~Q is a set of initial

states; is a set of accepting states; and is a

special boundary state. The transition function is restricted

so that ~S ( p , q )  = 1*)  i f f .  p # ,  for arbitrary qEQ. M accepts

• a string aL (Q1
_ (#))* if M has initial configuration I cY*

and af ter some number of steps M’ s rightmost non-I cell,

the accept cell, enters a state in The set of strings
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accepted by M defines its language , L. If for any string a

of length n M can determine whether otL within n steps, then

we say M accepts L in real time .

Notice that the accept cell is defined in terms of its

right neighbor , while the neighborhood of a cell includes only

the left neighbor . Consequently, no cell can know whether it

is the accept cell , and so every cell must act as though it

might be. To define the acceptor so that the accept cell is

aware of its special status would require differentiation of

cell types. While this would clearly not affact the accept-

ance power of OBCA ’s, it detracts from the structural regul-

arity which characterizes cellular automata . We will there-

fore assume the presence of a controller for M , which speci-

fies an initial configuration and then observes the succession

of states of the accept cell only. If that cell ever enters

an accept state , then the controller halts the operation of

M and declares acceptance of the input string . Note that

noriaccept cells may enter accept states during a computation ,

but this in no way affects the acceptance of the string by M.

These definitions are - one-way analogs of the well-known

two-way bounded cellular acceptor (BCA) 12). In the two-way

case, a cell’s neighborhood includes both its left and right

nearest neighbor cells , so that the transition function maps

triples of states into sets of states (or states , in the

deterministic case).

H 
_ _

~~~~~j~ a 2- -~ H~~~~~- ~~~~ - -2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Analogously, we can define two-way and four-way bounded

cellular acceptors on rectangular input tapes. Briefly, in

a cellular array automaton, K , a cell C is assigned to each

point in two-dimensional integer space, where C is a pair

(Q, 6); Q is the state set and 6 is the transition function .

For a two-way cellular array automaton , 6 maps triples of

states into sets of states or states, according to whether

C is nondeterministic or deterministic , respectively . Given

a cell at inteqer point (i ,j), 6 is a function of the states

of the cells at locations (i, j ) , (i,j—l) , and (i—l ,j). This

implies that the accept cell must be the bottom-right cell,

rather than the upper-left [11 or upper—right (3] cell.

This choice was made for greater compatibili ty with other

definitions of two-way automata [6 ,10]. A two-way bounded

cellular array acceptor is a quadruple M = (K ,QI,QA~#), where

K is a two-way cellular array automaton , and and * are

as defined earlier . Similarly , by making the straightforward

changes in 6 to include all four neighbors, we def ine a

four-way bounded cellular array acceptor.

The presentation of OBCA algorithms here is somewhat

informal , using the well established techniques of space-

time diagrams (see, e.g., (2,7]), registers or channels [7),

and propagating pulses (2]. A q-cell is a cell in state q

in the initial configuration. Cell i is the ith cell from

the left end , l~ i~n. Cell 1 is the left boundary cell, i.e.,
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the unique non-I cell with left neighbor in the boundary state

I . A q-pulse propagating rightward at 1/k speed represents a

flow of information (the state q) through a designated

register in each cell at the rate of one cell per k time

steps. That is, if a cell’s left neighbor ’s pulse-register

is filled at time t, then the current cell copies the contents

of that register into its own pulse-register at time t+k.

In a space-time diagram this is shown by a line of slope -k.

A pulse is said to meet or hit cell i when its pulse—register

first becomes nonempty.

— ——--- --~—‘~~~ ~~~~~~ -~~-- —---~~ — =—---—-- - -- - -- ~~~ -~~~~~~
- - ________________
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3. Language recognition ç~~~bility

In this ~,ection we investigate the acceptance power of

one-way BCA’s. First, it is shown that the class of non-

deterministic OBCA languages is equivalent to the class of

context-sensitive languages. Next , we present OBCA algorithm s

for accepting languages such as {a%’~fn~ l}, palindromes , and

Of particular interest is the class of real—time OBCA

languages. We show that almost all of the known real-time

SCA languages can also be accepted in real time by OBCA ’s.

It is an 01-en question whether or not this restricted variant

of BCA’s can accept all of the real-time BCA languages.

Although we have not been able to show that deterministic

OBCA ’s can accept all of the context-sensitive (or even the

deterministic context-free) languages , we will show that the

Dyck , linear , standard , and bracketed c ntext-free languages

are all real-time OBCA languages. The next section compares

OBCA’s with iterative acceptors, one-way multihead finite

acceptors , and on-line mu]titape Turing acceptors.

3.1. Nondeterminjstjc one-wa’~ bounded cellular acceptors

Theorem 3.1. A nondeterministic one-way bounded cellular

acceptor (NOBCA) can simulate a two-way bounded cellular

acceptor (BCA).

Proof: Given SCA A , we construct NOBCA B as follows.

At each time step the lef t boundary cell of B initiates a

1’-- ~~~~~~~~~~~~~~~~~~~~ _~~~~-
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rightward pulse, signaling each cell to simulate the next

step of the corresponding cell in A. That is, at time step

t>k, cell k in B nondeterministically guesses the state of

cell k in A at time t-k.

At the same time that the kth pulse is triggering the

kth simulation step, it also checks the legality of this

step using a one cell delay . To do this each cell stores

a state pair recording its last two nondeterministically

chosen states in the simulation . The kth pulse remembers

the three pairs of states of the last three cells it has

passed , so it can deterministica].ly compute whether or not

the state of the previous cell at time k is a legal successor

given the states of the three cells at time k-i.

In addition, since a cell cannot know if it is the

accept cell, it must also act as the rightmost non-I cell.

This means that each cell needs two registers: the first

stores a state pair as described above, so that the cell can

simulate a non-accept cell; the second register stores a

single state deterministically computed as the next state of

the cell given its current state (in register 2) and its left

neighbor ’s current state - (in that cell’s register 1), and

assuming that its right neighbor is in the boundary state.

Thus at each time step a cell checks the legality of the

current simulation step for the cells to its left, nondeter-

ministically guesses its own state at this step in case it

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _. J—
~ t~aIl~~_____________________________ - ________________
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is not rightmost , and determiriistically computes its state

in case it is rightmost. Hence the kth pulse computes the

kth simulation step and verifies its legality in real time.

If A is nondeterministic then each cell in B must store a

pair of sets of states in register 1 and a set of states

in register 2, but otherwise the simulation is analogous.//

Note that if B were unbounded it could deterministically

simulate A , where the successive simulated configurations

would be steadily displaced from the location of the (bounded)

initial configuration (5].

Theorem 3.2. The class of nondeterministic OSCA

languages is equivalent to the class of context-sensitive

languages.

Proof: A nondeterministic BCA can easily simulate an

NOBCA by ignoring its right neighbor connections ; thus the

theorem immediately follows from Theorem 3.1 and the well-

known equivalence of the ncrideterministic BCA languages to

the context-sensitive languages [2] .1/

We now investigate the language recognition capabilities

o-f deterministic OBCA ’s. From Theorem 3.2 it follows that

the OSCA languages are a subclass of the context-sensitive

languages. On the other hand, the OBCA languages contain the

regular sets, since any regular set can be recognized by a

one-way, deterministic finite acceptor. The remainder of

this section further delimits the acceptance power of OBCA ’s.
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Remarkably, we have yet to show that OBCA ’s are strictly

weaker than BCA ’s. Of special interest is the class of

languages accepted by OBCA ’s in real time . The relation

of this class to other real-time definable language classes

will be studied in Section 4.

3.2. Examples of OBCA languages

Example 3.1. The set of strings over alphabet {0,l)

— whose center symbol is a 1 is a real-time OBCA language.

Proof: The left boundary cell initiates a pulse at time

1 which is sent riqhtward at unit speed. Also starting at

time step 1, the input string is shifted right at 1/2 unit

speed. As illustrated by the space-time diagram of Figure

3.1, at time t=k the pulse hits cell k , which is currently

storing a copy of the input state of cell L (k+l)/2J. If

this state is a 1 the cel~. accepts.

Example 3.2. L = {anbn !n�l } is a real-time OBCA

language.

Proof: At time step 1 each cell permanently stores a

copy of its input state , with cell 1 specially marking its

state as leftmost. If cell 1 has input state b , this cell

enters a tailure state which is propagated to the right.

Beginning at step 2, a’s shift right at unit speed as long as

they cross first only a-cells and then only c-cells. If this

is not the form of the stored states, then a failure pulse is

propagated rightward . An a-pulse stops moving when it meets
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Figure 3.1. Recognizer for strings whose center
symbol is a 1. A dot means th~ cellhas entered an accepting state.

- ‘-



- ~ rr~~~~~~~~~~~~~~~~~~~~ ---~~~— -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.— -

11

a b-cell , at which t ime it changes to a c-cell. If the

leftmost a is ever cancelled by a b-cell , then this cell

accepts and also propagates a failure pul8e to its right

in case it is not the right boundary cell (i.e., the accept

cell). Figure 3.2 shows the space-time diagram for a simple

example. !!

Example 3.3. The Dyck languages are real-time OBCA

languages.

Proof: Let D be the Dyck language on alphabet

(a 1,a2,.. ~~~~~~~~~~~~~ ~
bn~

# where a j is the left paren-

¶ thesis correspond ing to right parenthesis b1. If the left

boundary cell contains a right parenthesis , this cell enters

a failure state which is propagated to the right. Otherwise,

the leftmost left parenthesis is specially marked . In addi-

tion , each a1-cell with a hi-cell neighbor is specially marked .

Each cell stores its input state and then left parentheses are

propagated to the right at u n i t  speed . A left parenthesis ak

continues moving right as long as the cells it crosses are

(‘ither a1 — cells or ct— cells. When ak meets a cell with input

state ~~~ if k—i t hen this .cciI’s state i s  changed to

and the ak-pulse stops moving tightward ; otherwise , a failure

state is propagated to the right. If the leftmost left

parenthesis is ever cancelled at a cell , then this cell

accepts. An accepting state is then propagated to cells cancelled

by a specially marked left parenthesis as long as th. pulse has

not encountered an intermediate cell in the failure state.

Figure 3.3 shows the space-time diagram for a simple example.//

-1I-.
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Figure 3.2. Recognizer for {a%’~~n�1}.
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Figure 3.3. Dyck language recognizer. Hollow

circles indicate provisional accepting
cells , filled circles indicate cell

I 

has entered an accepting state.
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Example 3.4. L = ta~b
3ckIi= j or ~ ‘k} is a real-time

OBCA language.

Proof: Similar to the proof of Example 3.2. The left

boundary cell starts a pulse which checks in real time that

the input is of the form *a*b*c*; if it is not, a failure

state is entered. Simultaneously, both a’s and b’s shift

rightward at unit speed with the (*,a) and (a ,b) boundary

cells specially marked . If the left boundary a-cell is

cancelled by cell i, that cell enters an accept state. We

propagate acceptance to the right (since the input is of the

form lakbkE* ) as follows : if cell j is in an accept state

and cell j+l is a c-cell, then cell j+l enters an accept

state.

Simi lar ly ,  if an (a ,b) boundary pulse is cancelled by

c-cell i, and cell i has input of the form #a*b*c* (it must

wait until the left boundary pulse arrives for this inform-

ation) , then it enters an accepting state, since t*a*b*c*}fl

In addition, if cell i is not also accepted

because it has the form *a
kbkE* , then a fa ilure state is

propagated to all cells to the right of cell i.//

In a similar manner , it can be shown that the context-

sensitive language {a%licfln�l } is a real-time OBCA language .

The details are left to the reader.

Example 3.5. The set of palindromes over alphabet E is

a real-time OBCA language . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~ -— -= ~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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Proof: Each cell permanently stores its input state

and then beginning at time step 1 the input string is shifted

rightward at unit speed. At the end of time step 1 cell i

compares its input state with the state currently propagating

through it. If they are equal, then the substring from cell

i-l to cell i is a palindrome, and cell i remembers this fact.

At the end of time step 3 cell i again compares its input

state with its current propagating state, originally f rom

cell i-3. If these states are equal and if cell i-l m di-

cates that the substring between i and i-3 (i.e., cells i-l

and i-2) is a palindrome, then cell i remembers the fact. By

induction, at the end of time step 2k+l cell i (i~ 2k+l ) - -

checks whether or not the input substring for the 2k+2 cells

from cell i-2k-l to cell i is a palindrome by comparing the

input states from cells i and i—2k-]. and knowing (from cell

i— i) whether or not the substring between cells i-h and i—2k

is a palindrome. Similarly , at the end of each even time

step t=2k , we can check whether or not the input substring

for the 2k+l cells from cell i-2k to cell i is a palindrome.

Figure 3.4 illustrates the algorithm.

Simultaneously , a pulse originating from the left boundary

cell at time 1 is propagated to the right at unit speed .

This pulse hits cell i at time step i, just after the cell

has determined whether or not the input string from cell 1

to cell i is a palindrome (this computation was completed at

- -
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Figure 3.4. Palindrome recognizer. Dots (crosses)
indicate the comparisons for determining
whether or not the leftmost ten (eleven)
symbols constitute a palindrome.

__________
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the end of step i-i). Hence, at the end of step i cell i

enters an accept or reject state, as appropriate.//

Example 3.6. L = (uJx~x EE* ,w€E*) is a real-time OBCA

hang uage.

Proof: Same as the proof of Example 3.5, except that

acceptance by cell i , indicating that some prefix is a

palindrome , is propagated to all cells to the right of i.//

Example 3.7. L = {x~~
R Ixt~ *,w~i*} is a real-time OBCA

language.

Proof: Again , the proof is only a slight modification

of the proof of Example 3.5. In this case , cell i permanently

enters an accept state if it ever determines that some sub-

string with rightmost cell i is a palindrome (recall that at

the end of time t cell i knows w!iether or not the input

string from cell i-t to cell i is a palindrome). Acceptance

by a cell does not otherwise alter the computation of that

cell, though, so that in case the cell is not the accept

cell it will continue to act as a “middle ” cehl.//

Example 3.8. L = {a’t In is prime) is an OBCA language.

Proof: Hennie [6, pp. 132-139] describes an unstable

unilateral sequential iterative system in which each cell

outputs a 1 if f. the index of that cell is a prime . That

~ilgorithm is readily adapted to accept L on an OBCA in

0(n2) time.//

— — — — -
~~~~~~~~~~~~ -~~~~ 
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Hennie notes that the acceptance time can be reduced

to O(n log n) by making use of a binary rather than unary

representation of integers. It is an open question whether

or not an OSCA can accept L in real time .

Example 3.9. L = {t~~jw€E *) is an OBCA language.

Proof: Each cell contains six registers A ,R,S,T1,T 2

and X. At the beginning of time step 1 the lef t boundary

state marks itself uniquely, each cell stores a permanent —

copy of its input state in its A-register , and an S—pulse

begins moving right at unit speed through S-registers.

When the S-pulse arrives at a cell c, c simul taneously

copies its left neighbor ’s A-register into c’s T-register .

At subsequent time steps c copies the contents of its

T1-register into its T2-register, and then copies its left

neighbor ’s T2-register into its own T1-register. Cell c

stops copying after it stores the marked left boundary

state in its T2-register. Thus, beginning at time step k ,

cell k reads at unit speed the input states from cells

k—h through 1, storing each state for two steps before

passing it on to the right in “bucket-brigade ” fashion.

At time step 2 an R—pulse begins moving rightward at

2/3 unit speed from cell 2, i.e., the sequence of cells

whose R-registers are marked starting at the beginning of

time step 3 is: 3,4,4,5,6,6,7,8,8,... Starting at the

next time step after the R-pulse arrives at a cell , the
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cell begins making comparisons of its own irput state with

the state stored in its T1-register. Comparisons continue

at each step until the marked left boundary state is com-

pared . Under these conditions , it is easily verified that

cell k’s T1— register contains the input state of cell k-t

at the beginning of time step k+t-l , and the R-pulse

arrives at the beginning of time step 13k/2~-2; hence it

follows that cell k compares its own input state with the

j input states from cells Ik/2 I through 1 at time steps

~3k/2]-l through 2k-2, respectively.

If k is odd , then cell k is easily constructed so that

it never enters an accept state, since only strings of even

length are contained in L. If k is even, then the compari-

Sons that must be made in order to determine whether or not

the input up to cell k is in L are

A
(k/2)÷l :A l 

where A1 is the input state to cell i (stored in

its A-register). But these are exactly the tests made at

cells k,...,(k/2)+l at time steps (3k/2)—l , (3k/2)—2 ,,..,k,

respectively. When cell (k/2)+ l makes its own final compari-

son, A (k/2)+l :A l at time itep k, it initializes a logical

variable X (i.e., its X—register) to the truth value of

This logical variable is then passed to the

right at unit speed , each subsequent cell “ANDing ” into X

the result of its own comparison at that step. Thus when

cell k makes its first comparison Ak:A k,2 at time (3k/2)—l ,

L ~ - ~~~~~~~~~ ~~~~~~~~~
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it also has sufficient information about all of the other

(k/2)-l comparisons that are necessary for cell k to accept

or reject its input.

Since cell ) may be the ((k/2)+l)st cell for cell 2j—2

to its right , each cell must initialize its X—register with

the result of its own final comparison , A~ :A 1. During the

steps between the first and last comparison , each cell just

copies the contents of its left neighbor ’s x—register into

its own X-register , and then ANDs in the truth value of the

equality of its T1-reg ister contents with its input state.

Thus each cell accepts or rejects its input string within

4 times real time. Figure 3.5 illustrates the space—time
diagram for this algorithm.//

3.3. OBCA ’s and context-free languages

It is an open problem whether or not the context—free

languages are accepted by OBCA ’s. Example 3.3 showed that

the Dyck languages are real-time OBCA languages. The next

two theorems show that two other important classes of context-

free languages are accepted in real time.

Theorem 3.3. The linear context-free languages are

real-time OBCA languages.

Proof: Smith [121 has shown how a BCA restricted to use

an OSCA neighborhood can accept this class of languages.!!

A bracketed context-free language consists of all the

structural descriptions of the strings in a context-free

___. —--, — — - ,.. ..r.~~ , 4
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language. Given a context-free grammar G we construct its

associated bracketed context-free grammar by inserting indexed

brackets around the right-hand sides of G’s production rules.

That is, if ~ -~w is the ith production in G, then the ith

production in G’ is ~~u ] 1, where [
~ and ]~ are new symbols

- 
. added to G’s vocabulary . The language generated by G’ is a

bracketed context-free language. This class of languages was

introduced in [13] for the purpose of studying the structural

descr iptions of strings generated by transformation~ l grammars.

Their relation to marker automata is studied in [14]. We now

show that this important subclass of the context-free languages

is accepted by OBCA ’s.

Theorem 3.4. The bracketed context-free languages are

real-time OBCA languages.

Proof: Each bracketed language is generated by a bracketed

grammar , G, which has a finite number of productions, each with

a finite length right-hand side. Consequently we can construct

an OBCA which checks the correctness of the application of the

production rules, since at most a fixed, finite number of

terminal symbols or brackets of depth d+i. can occur between

matched brackets of depth d. In addition , since the brackets

themselves define a Dyck language , we can use the algorithm

described in Example 3.3 to check the correctness C~ the

labelled brackets.
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More specifically, each cell has two registers , A and 13.

During time step 1 each cell stores a copy of its input

symbol in its A— register and , if it is a left bracket, stores

a copy of the ri ghthand side of the production rule associated

with the bracket in its B-register. That is, if a cell con—

tains left bracket [~ and the ith production rule is

then the cell’s B-register contains the bounded length string

In addition , if cell 1 contains left bracket and the

left-hand side of production i is the start symbol , then its

B— register is specifically flagged as the start rule; other-

wise cell 1 sends a failure-state pulse rightward .

At subsequent time steps each cell copies the contents of

its left neighbor ’s B-register into its own B-register and ,

if after this copy operation a cell’s A- and B—registers are

nonempty , doe s the fol lowing : If the lef tmost  symbol in the

B-register matches the symbol in the A-register, then empty

the A—register and delete the leftmost symbol in the B-register.

(Nonterminal a matches left bracket if f.~ = a.) If , in

addition , the B-register contained the start rule but is now

empty, then enter an accept state and propagate failure to

any cells to the right . Otherwise , the symbols didn ’t match ,

indicating that a rule was not applied correctly , so enter a

failure state and propagate failure to all cells to the right .

This process generates , for each rule application , the rule ’s

right-hand side (except for the f). Each symbol generated is

matched against a single symbol in the input string . To show

t
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that the rule checking procedure is correct , consider the

application of a rule of the form a-’.[10n1t1n2. ~~~~~~~~

where T~~€Z * i nj~
V_ (

~
UE LUZR). Then that portion of an input

string which contains an application of this rule must be

of the form

[T o{ 
~~~~ 

T~~{ ____ }  . . . {  
__

~~
.} 

T
m]fl1 n1 n2 n2 rim

where { means that this symbol may be any one of a finite

set of left brackets which are part of rules with left-hand

side nonterminal n~ , and the dashes replace all symbols

associated with other (nested) rule applications.

Since all rules are checked in parallel , we are

guaranteed that the checking of all nested rules ’ term-

inal symbols and right brackets will be completed before

the current rule is considered at such cells. Consequently,

the contents of the A-registers that the left bracket finds

as it moves right will be

T
o

{ $.. .$t
1

( $...$T2...{ $.••$t 1 ,
Ii
]. ~m 

m

where $ indicates an empty register. Ignoring the $‘s, this

is just the string initially- stored by the left bracket cell. !!
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4. Relationship with other ~~~es of automata

This section studies the relationship of OBCA ’s to other

types of automata. In particular , we show that there exist

real-time OBCA languages not accepted by real-time iterative

acceptors , real-time on-line multitape Turing acceptors , or

one-way multihead finite acceptors. Conversely , it is not

known whether languages exist that are accepted by those

types of acceptors but not by OBCA ’s.

4.1. Iterative acceptors

An iterative acceptor is a two—way cellular acceptor with

cell 1 augmented with an external input and an external output.

The initial configuration of an iterative acceptor has every

cell in a distinguished quiescent state. Beginning at time

step 1 a sequence of input states is applied to the external

input line. If the state observed at the external output at

the end of some time step is an accept state, then we say

that the input sequence of states has been accepted . See

[7] for a formal definition .

Theorem 4.1. There is a context-free language, not ac-

cepted in real-time by any deterministic iterative acceptor ,

which is a real-time OBCA language.

Proof: L = {xux~~~x(E*,wtE*} was shown in Example 3.7 to

- 

- 

be a real-time OBCA language. Cole [7] has proved that L

cannot be accepted by any real—time deterministic iterative

acceptor. 1/
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4.2. On—line Turing acceptors

An on-line k-tape Turing acceptor (OTA) consists of a

finite control, a one-way read-only input tape, and k two-

way read-write storage tapes. Initially, the storage tapes

are blank, the input tape contains an input string , and the

finite control is positioned over the leftmost input symbol.

-
~~ At each step the control changes state , each storage tape

head writes a (possibly) new state at the current square and

independently moves left, right , or not at all , and the

input tape head moves one square to the right. A string of

length n is accepted in real-time by an 0Th T if T is in an

accept state after n steps. See, for example , [9, 13] for a

formal definition and for previous results.

Theorem 4.2. There is a context—free language , not

accepted in real-time by any deterministic on-line multitape

Turing acceptor , which is a real-time OBCA language.

Proof: Hartmanis and Stearns [91 have proved that the

language L = {yxdy ’x~~x€ {0,l}*; y ,y ’ E{ A } U{ O ,l,d)*d} cannot be

accepted in real time by any OTA. We now show how to construct

a real-time OBCA which accepts L.

The algorithm uses three registers per cell. One stores

a permanent copy of the input state , one shifts the input right

at unit speed , and the third reverses every substring of the

form d { 0,l)*d, and compares it with every substring to its

right of the form d(0,l}* . If a match is found, the rightmost

cell in the right substring enters an accept state.
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More specifically, at the beginning of time step 1 each

cell stores a copy of its input state in registers 1 and 2

and blanks out register 3. Then the input string begins

shifting right through register 2’s at unit speed . When a

propagating 0 or 1 meets a cell with state d in register 1

it is copied into register 3. This bit now shifts right

at unit speed until it finds a cell that contains in register

3 either a blank or an f. If it contains an f then the

propagating symbol stops. If it is blank and the symbol

matches the symbol in register 1, then we write the symbol

in the register; otherwise the two symbols don ’t match, so

we write an f in the register. In particular , if the symbols

just matched and the propagating symbol was the left end

symbol of some { O ,l}* substring (i.e., its left neighbor is

a d-cell) then the current cell enters an accepting state,

since the entire substring matches in this position .

When a propagating d meets a d-cell, a pulse is started

through register 3’s which blanks out all registers up to

the next d-cell. In this way a given input substring can be

matched against each substring to its left without interference

from prior match attempts. Figure 4.1 illustrates a simple

example.//

4.3. Multihead acceptors

A one-way k-headed finite acceptor consists of a finite

state control, a single read-only input tape , and k one-way
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Figure 4.1. Recognizer for
Vertical lines describe register 3 contents: thin
dash means blank, thick dash means 0 or 1, and
double line means f. A dot indicates the cell
has entered an accepting state.
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reading heads. Each head begins on the leftmost square of

the input tape and independently moves to the right under

the direction of the finite state control. In addition , the

control cannot detect the coincidence of the heads. Hence ,

the transition function is of the form ~:QxI.k÷Qx{O ,l) k,

where Q is the set of states, E is the input tape alphabet ,

arid {0,1} is the set of possible directions of -iovement for

each of the heads. See, e.g., [8,16,171 for earlier results

and formal definitions.

Theorem 4.3. There is a language , not accepted by any

one-way , k-headed finite acceptor, which is accepted by an

OSCA.

Proof: Yao and Rivest [17] have proved that the language

L = ~~~~~~~~~~~~~~~~~~~~~~~~ W
i 

= W2b~ i+l~ 
b�l} cannot be

accepted by any one—way , k-headed finite acceptor. We now

sketch how to construct an OBCA which accepts L.

This algorithm combines the methods used in the palin-

drome and {Ww } language acceptance algorithms. Briefly, at

time step 1 each cell whose left neighbor is a f- or *..cell

marks itself and then all the u ’s commence shif ting rightward

in bucket-brigade fashion , as described in the proof of (tow).

When the leftmost (marked) symbol in hits a ~~~~~~ it

begins checking whether or not w~ = w~~1, also as described

in the proof of (~ w}. The rightmost cell of wj+l stores the

result of this comparison. u~ continues shifting right ,

_ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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this time shif ting until it finds the second *_cel]. (i.e.,

third overall). At this time it begins checking whether or

not w~ = 

~~~~~ 
Similarly, ~ continues shifting rightward ,

- 
- comparing itself with substrings w1+l, w1~~ , 

~~~~~~~~
The proper combination of these substring compar isons ,

which all told test ~i�j w 2~~:w 2~ ÷1 and w 2~~~1:w 2~ ÷2 1 is as

described in the palindrome algorithm. That is, af ter the

first comparison, wj:wj+l~ 
the rightmost cell in stores

whether or not they were equal. As substring wj 1  passes by

substring w~~1 on its way to make its second test, w~...1:w~+2~
it reads whether or not = w~~~1. If = and the

wi ’s in between form a palindrome , then the rightmost symbol

in w1~ 2 remembers this fact .  This process continues , so that

substring w~ is successively compared with substrings to 1 2,

At the completion of the kth test the rightmost

cell of is in a “provisional accept state” if f = toi_2k

and the w
i
’s in between form a palindrome. In particular ,

if af ter the comparison w1:w1, toi’s rightmost cell is in a

provisional accept state, then the rightmost cell of to1
enters an accept state. Since the bucket-brigade moves only

at 2/3 unit speed, L is accepted in 3/2 real time by an OBCA.

Figure 4.2 schematically illustrates the space-time diagram

for this algorithm. !! -

Various other definitions of multihead f inite automata

have been studied, including Sudborough ’s multihead wr iting

finite automata [3.9] and Shah and Rosenfeld ’s multicontrol
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finite automata (19]. The latter consist of k read-only

heads which act under the control of k independent and syn-

chronous finite controls. These heads can sense each others’

states only when they are in the same or adjacent positions

on the input tape. Under a one—way restriction , it is easily

seen that such automata are no more powerful than single—

head finite-state automata.

1~
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5. Further remarks

5.1. Closure properties

Using a two-channel technique similar to that used by

Cole [7] and Smith (21, it is easily proved that the class

of (real-time) OBCA languages is closed under union , inter-

section, and set difference. AB a consequence, the standard

context-f ree languages are real-time OBCA languages , since

each is the intersection of a Dyck language and a regular set.

The class of (real-time) OBCA languages is also closed

under complementation, since an OBCA M with q states is

periodic within time qn (respectively, n) for input of length

n. That is, if M accepts language L, we can design an OBCA

M’ which simulates M, counts up to qfl (respectively, n) at

cell n (using the radix q counter per cell technique discussed

in [201), and accepts iff M has not yet accepted by this

time, so that M’ accepts just I..

It is an open problem whether or not the (real-time)

OBCA languages are closed under concatenation. In particular ,

it is easy to show that if L is a (real-time) OBCA language ,

then L~* is a (rea]-time) OBCA language. Briefly , if a cell’s

lef t neighbor ever enters an accept state , then it also

accepts. On the contrary , it is not known whether Z*L is a

(real-time) OSCA language if L is. In spite of the negative

answers to this question for real—time iterative arrays [7)

and real-time on-line multitape Turing acceptors [15), the

L~~~~~
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results of Theorems 3.5 and 3.6 suggest an optimistic outlook.

Of course, if we could answer the open question of OBCA

closure under reversal in the affirmative , then closure under

Z*L would immediately follow .

5.2. Time Bounds

Trivially, the acceptance of any reasonable language by

an OBCA of length n requires at least n time steps since

otherwise the accept cell cannot know the input state of

the leftmost cell. We have exhibited in Section 3 a wide

variety of languages which are accepted in real time. Only

for the languages related to {t ~w~ and primes were non-real-

time algorithms given. It is of interest, then, to ask

whether all OBCA languages can be accepted in real time.

Of special interest in this regard is the fact that

there cannot exist a speed-up theorem for OBCA ’s comparable

to those for BCA ’s (11, cel lular arrays (5] , and iterative

arrays (7], since the notion of packing information origi-

nally held in several cells into a single cell is impossible

for an OBCA. To show this, suppose that such a packing

algorithm did exist. 
- 

Then, in particular, there must be an

algorithm for packing two input states per cell in the right

half of an OBCA. Consider the input state of cell 1. Given

an OSCA of length 2n, cell l’s state is packed into cell n+l

as a result of this algorithm. But by definition of an OSCA ,

cell (n+l)’s sequence of states can only depend on the states

of cells 1 throu- n+1. Therefoic, given any OBCA of length

— - - -  __
_ _

_
_ _  

I
-- -~~~ ~~~~~~~~~~~ - - rn ~~~~~~~~~ - - _ _
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greater than 2n, the algorithm will also pack cell l’s

state into cell n+1 , which is not the correct packing .

Thus such an algorithm cannot exist.

On the other hand , exponential time is an upper bound

on the acceptance of any OBCA language , since an OBCA of

length n with q states must become periodic within gri

time steps.

5.3. Two-dimensional languages

The pattern recognition capabilities of bounded cellular

array acceptors with the standard four nearest neighbor con—

nection have been studied previously , for example in [1 ,3,4).

This sect ion briefly considers bounded cellular array acceptors

when the neighborhood of each cell is restricted to two

neighbors only -- the cells above and to the left of the given

cell. (Refer to Section 2 for definitions.) In particular ,

we are interested in two—way automata which accept their input

arrays in time proportional to the array diameter. That is,

given automaton M accepting language L, if there exists a k

such that M accepts every m by n array in L within k (m+n)

time steps, then we say M accepts L in diameter time.

Let 4BCA (N4BCA) denote a deterministic (nondeterministic)

bounded cellular array acceptor with four neighbors per cell.

Let 2BCA (N2BCA) denote a deterministic (nondeterministic)

bounded cellular array acceptor with the two cell ne.~.ghborhood

just described . 

_i-
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In the nondeterministic case, it is easily shown using

the techniques in Section 3.1 that N2BCA ’s accept the same

class of languages accepted by N4BCA ’s. Briefly, an N2BCA

can simulate an N4BCA as follows. At each time step the

upper-left corner cell in the N2BCA initiates a pulse wave

moving to the right and down at unit speed indicating to

each cell to nondeterministically guess its next set of

states in the N4BCA. At the same time that a pulse insti-

gates the next transition for all cells at distance d from

the upper-left corner , it also checks deterministically the

legality of the set of states chosen at the previous step

by the cells at distance d-l from the upper-left corner cell.

In addition, each cell acts as a bottom—row , right—column ,

and bottom-right corner cell in three other registers. Hence ,

the kth pulse initiates the kth simulation step and verifies

its legality in diameter time steps. Since these pulses on -

ginate from the upper—left corner cell at every time step,

the simulation at any cell is real time after at most a diam-

eter time startup delay. - -

As in the one—dimensional case, it is an open problem

whether or not the class of languages accepted by 2BCA ’s is

precisely the class of languages accepted by 4BCA ’s. However,

two-dimensional analogs of many of the OBCA string languages

in Section 3 can be accepted by 2BCA ’s in time proportional

to the diameter of the array. For example, the set of square 

~~~~~~~~~~~~~~~~~~~ -- -
-

~~~~~~~ ~~~
- ____
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I
arrays of odd side length having 1 in their center cells is

a diameter-time 2BCA language. The desired automaton is

constructed as follows. At time step 1 the upper-left corner

cell initiates a pulse which moves at unit speed diagonally

across the array, i .e., at odd steps moving down and at even

steps moving right. Simultaneously, at half unit speed the

input is shifted diagonally towards the bottom-right corner.

It is easily verified that at time step t = 4k+l the pulse

is at cell (2k+1 , 2k+l) , and this cell is currently storing

a copy of the input state at cell (k+l, k+l). Thus, if the

pulse arrives at a cell on the diagonal when its current

input state is a 1, then tt’e cell enters an accepting state.

Blum and Hewitt 121] have proved that this language cannot be

accepted by any finite-state acceptor.

Other , more inherently two-dimensional , languages can

also be accepted by 2BCA ’s. The connectedness language is

the set of all rectangular arrays over alphabet {O ,l) sucn

that any two 1-cells, p and q, are connected by a path of

1-cells p = Cl, C 2 , . .. , C
k 

= q, where c~~ 1 is adjacent to C
1

for all 1~ i~k. Beyer (1] has shown how a 4BCA can accept

this language. The connectivity transformation used there is

readily modified to work on a 2BCA in diameter time. Similarly ,

Beyer ’s maze predicate (1] can be accepted by a 2BCA.

A language we have yet to show can be accepted by a 2BCA

is the majority predicate, consisting of the set of all

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



rectangular arrays over alphabet { 0,l } in which there are

more l’s than 0’s. It is known that a 4BCA can accept this

language in diameter time [3,4).

Finally, we leave open for future study the closure

properties of 2BCA languages. Of particular interest are

properties invariant under geometric transformations such

as translation, rotation, and scale change.

- -
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6. Concluding remarks

The question of whether or not OBCA ’s are strictl y

weaker than BCA’ s remains unanswered . However , the follow-

ing argument suggests an approach to proving that the answer

is in the affirmative . Let L be a function from the posi-

tive integers into the positive integers, let M be a BCA

or an OBCA with a special blank state b~Q1, and let L be a

set of strings over the input states Q1-(b ,*}. Then M accepts

L_with L(n)_ ce lls , L(n)~ n, provided that

( i )  Fo r each s t r i n g  ~tL of length n, there is a nonnega-

tive integer m such that m+n L (n) and M eventually

enters an accepting state qiven the initial configu-

ration rbm~*~

(ii) If M accepts ~ in the sense of (i) then oLL.

Stearns ,  Harth~nis, and Lewis [22) have shown that for any

tape func t ions L1(n) and L2(n) , with L1(n)~~Ilog ni fully

constructable and ~~ (L2 (n)/L 1(n)) 0, there is a set accepted

by an L1(n)-tape-bounded deterministic TuL-ing machine , but not

accepted by any L2(n) -tape-bounded deterministic Turing machine .

For example, there is a language accepted by an n2-tape-bounded

deterministic Turing machine which is not accepted by any n-tape-

bounded deterministio Turing machine.

Clearly, an n-tape-bounded deterministic Turing machine

can simulate a BCA with n cells. It is also easily shown that

a BCA with n2 cells can accept any language accepted by an
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n2-tape-bounded deterministic Turing machine, since it has

enough space to simulate the moves of such a Turing machine.

It follows from these remarks and the result of Stearns

et al. that there is a language accepted by a SCA with n2

cells which is not accepted by any BCA with n cells.

We conjecture that any language accepted by an OBCA

with n2 cells can be accepted by a BCA with n cells. If

this could be proved we could then conclude that there is

a language accepted by a RCA with n2 cells which cannot be

accepted by any ORCA with n2 cells , i.e., BCA’ s are stronger

than OBCA’s.

I
r.T _
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